Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds.

نویسندگان

  • Xike Qin
  • Bolin Liu
  • Jonathan Soulard
  • David Morse
  • Mario Cappadocia
چکیده

A method for the quantification of S-RNase levels in single styles of self-incompatible Solanum chacoense was developed and applied toward an experimental determination of the S-RNase threshold required for pollen rejection. It was found that, when single style values are averaged, accumulated levels of the S(11)- and S(12)-RNases can differ up to 10-fold within a genotype, while accumulated levels of the S(12)-RNase can differ by over 3-fold when different genotypes are compared. Surprisingly, the amount of S(12)-RNase accumulated in different styles of the same plant can differ by over 20-fold. A low level of 160 ng S-RNase in individual styles of fully incompatible plants, and a high value of 68 ng in a sporadic self-compatible (SSC) line during a bout of complete compatibility was measured, suggesting that these values bracket the threshold level of S-RNase needed for pollen rejection. Remarkably, correlations of S-RNase values to average fruit sets in different plant lines displaying sporadic self-compatibility (SSC) to different extents as well as to fruit set in immature flowers, are all consistent with a threshold value of 80 ng S(12)-RNase. Taken together, these results suggest that S-RNase levels alone are the principal determinant of the incompatibility phenotype. Interestingly, while the S-RNase threshold required for rejection of S(12)-pollen from a given genetic background is the same in styles of different genetic backgrounds, it is different when pollen donors of different genetic backgrounds are used. These results reveal a previously unsuspected level of complexity in the incompatibility reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycosylation of S-RNases may influence pollen rejection thresholds in Solanum chacoense.

A survey of Solanum chacoense plants expressing an authentic S(11)-RNase transgene identified a line with partial compatibility to S(11) pollen. By comparing fruit set to the S-RNase levels determined immunologically in single styles, the minimum level of S(11)-RNase required for full rejection of S(11) pollen was estimated to be 18 ng per style. The S(11)-RNase threshold levels are thus consid...

متن کامل

Compatible Pollinations in Solanum chacoense Decrease Both S-RNase and S-RNase mRNA

Gametophytic self-incompatibility (GSI) allows plants to block fertilization by haploid pollen whose S-allele constitution matches one of the two S-alleles in the diploid styles. GSI in Solanum chacoense requires a stylar S-RNase, first secreted from cells of the transmitting tract then imported into incompatible (self) pollen tubes. However, the molecular mechanisms allowing compatible pollen ...

متن کامل

Degradation of S-RNase in compatible pollen tubes of Solanum chacoense inferred by immunogold labeling.

The flowering plant Solanum chacoense uses an S-RNase-based self-incompatibility system in order to reject pollen that shares the same genes at the S-locus (S-haplotype) with the style (an incompatible reaction). Two different models have been advanced to explain how compatible pollen tubes are protected from the cytotoxic effects of the S-RNase, sequestration of the S-RNase in a vacuolar compa...

متن کامل

eEF1A Is an S-RNase Binding Factor in Self-Incompatible Solanum chacoense

Self-incompatibility (SI) is a genetic mechanism that allows flowering plants to identify and block fertilization by self-pollen. In the Solanaceae, SI is controlled by a multiallelic S-locus encoding both S-RNases and F-box proteins as female and male determinants, respectively. S-RNase activity is essential for pollen rejection, and a minimum threshold value of S-RNases in the style is also r...

متن کامل

A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase

The stylar determinant of gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is an S-RNase encoded by a multiallelic S-locus. The primary structure of S-RNases shows five conserved (C) and two hypervariable (HV) regions, the latter forming a domain implicated in S-haplotype-specific recognition of the pollen determinant to SI. All S-RNases are glycosylated at a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 9  شماره 

صفحات  -

تاریخ انتشار 2006